题目内容
如图,在Rt中,,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于E.
(1)求证:点E是边BC的中点;
(2)求证:;
(3)当以点O、D、E、C为顶点的四边形是正方形时,求证:△ABC是等腰直角三角形.
(1)求证:点E是边BC的中点;
(2)求证:;
(3)当以点O、D、E、C为顶点的四边形是正方形时,求证:△ABC是等腰直角三角形.
.(1)证明见解析
(2)证明见解析
(3)证明见解析
(2)证明见解析
(3)证明见解析
试题分析:(1)由AC是直径,可得∠ADC=90°,从而可得∠BDC=90°,若要证明点E是BC边的中点,只需证明DE=CE=BE即可,由已知、切线的性质以及圆的性质就可以得到了;
由∠BDC=∠ACB,∠B=∠B可得△ABC∽△CDB,利用对应边成比例就可得到
当以点O、D、E、C为顶点的四边形是正方形时,可知∠OCD=45°,由AC是直径可得∠ADC=90°,从而得出∠A=45°继而得出△ABC是等腰直角三角形.
试题解析:(1)如图,连接OD.∵DE为切线,∴∠EDC+∠ODC=90°;
∵∠ACB=90°,∴∠ECD+∠OCD=90°.又∵OD=OC,∴∠ODC=∠OCD,
∴∠EDC=∠ECD,∴ED=EC;∵AC为直径,∴∠ADC=90°,
∴∠BDE+∠EDC=90°,∠B+∠ECD=90°,∴∠B=∠BDE,∴ED=DB.
∴EB=EC,即点E为边BC的中点;
(2)∵AC为直径,∴∠ADC=∠ACB=90°,又∵∠B=∠B
∴△ABC∽△CDB,∴,∴BC2=BD•BA;
(3)当四边形ODEC为正方形时,∠OCD=45°;∵AC为直径,
∴∠ADC=90°,∴∠CAD=∠ADC﹣∠OCD=90°﹣45°=45°
∴Rt△ABC为等腰直角三角形.
练习册系列答案
相关题目