ÌâÄ¿ÄÚÈÝ
¡¾ÌâÄ¿¡¿ÎÒÃÇÖªµÀ£¬°ÑÖ±Ïßy=xÏò×óƽÒÆ1¸öµ¥Î»¿ÉµÃµ½Ò»´Îº¯Êýy=x+1µÄͼÏ󣬰ÑÖ±Ïßy=kx(k¡Ù0)Ïò×óƽÒÆ1¸öµ¥Î»¿ÉµÃµ½Ò»´Îº¯Êýy=k(x+1)µÄͼÏ󣬰ÑÅ×ÎïÏßy=ax2(a¡Ù0)Ïò×óƽÒÆ1¸öµ¥Î»£¬¿ÉµÃµ½¶þ´Îº¯Êýy=a(x+1)2µÄͼÏó.ÀàËƵģºÎÒÃǽ«º¯Êýy=¨Ox¨OÏò×óƽÒÆ1¸öµ¥Î»£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖл³öÁËк¯ÊýµÄ²¿·ÖͼÏ󣬲¢Çë»Ø´ðÏÂÁÐÎÊÌ⣺
(1)ƽÒƺóµÄº¯Êý½âÎöʽÊÇ__________£»
(2)½èÖúÏÂÁбí¸ñ£¬ÓÃÄãÈÏΪ×î¼òµ¥µÄ·½·¨²¹»Æ½ÒƺóµÄº¯ÊýͼÏó£º
(3)µ±x ʱ£¬yËæxµÄÔö´ó¶øÔö´ó£»µ±x ʱ£¬yËæxµÄÔö´ó¶ø¼õС.
¡¾´ð°¸¡¿(1) £»(2) ¼û½âÎö£» (3) £¬(»ò¡Ý£¬£¼»ò>£¬¡Ü).
¡¾½âÎö¡¿
(1)¸ù¾Ý²ÄÁÏ¿ÉÒԵõ½Æ½ÒƹæÂÉ:×ó¼ÓÓÒ¼õ;
(2)¸ù¾Ýº¯ÊýͼÏóµÄ¶Ô³ÆÐÔ»³öͼÏó;
(3)¸ù¾Ýº¯ÊýͼÏóÖ±½ÓÌî¿Õ.
(1) (д³É·Ö¶Îº¯ÊýÒ²¿É)
(2) ÈçͼËùʾ
(3) £¬(»ò¡Ý£¬£¼»ò£¬¡Ü)
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿