题目内容
【题目】如图,线段 AB=4,M 为 AB 的中点,动点 P 到点 M 的距离是 1,连接 PB,线段
PB 绕点 P 逆时针旋转 90°得到线段 PC,连接 AC,则线段 AC 长度的最大值是_________.
【答案】3
【解析】
以O为坐标原点建立坐标系,过点C作CD⊥y轴,垂足为D,过点P作PE⊥DC,垂足为E,延长EP交x轴于点F,设点P的坐标为(x,y),根据题意动点 P 到点 M 的距离是 1,在△0PF中利用勾股定理得x2+y2=1.然后证明△ECP≌△FPB,由全等三角形的性质得到EC=PF=y,FB=EP=2-x,从而得到点C(x+y,y+2-x),最后依据两点间的距离公式可求得AC=,最后,依据当y=1时,AC有最大值求解即可.
解:如图所示:过点C作CD⊥y轴,垂足为D,过点P作PE⊥DC,垂足为E,延长EP交x轴于点F.
∵AB=4,O为AB的中点,
∴A(-2,0),B(2,0).
设点P的坐标为(x,y),则x2+y2=1.
∵∠EPC+∠BPF=90°,∠EPC+∠ECP=90°,
∴∠ECP=∠FPB.
由旋转的性质可知:PC=PB.
在△ECP和△FPB中,
,
∴△ECP≌△FPB.
∴EC=PF=y,FB=EP=2-x.
∴C(x+y,y+2-x).
∵AB=4,O为AB的中点,
∴AC==
∵x2+y2=1,
∴AC=
∵-1≤y≤1,
∴当y=1时,AC有最大值,AC的最大值为=3.
故答案为:3.
练习册系列答案
相关题目