题目内容
(11·贵港)如图所示,在矩形ABCD中,AB=,BC=2,对角线AC、BD
相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是
A. B. C.1 D.1.5
相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是
A. B. C.1 D.1.5
D
考点:
分析:先利用勾股定理求出AC的长,然后证明△AEO∽△ACD,根据相似三角形对应边成比例列式求解即可.
解答:解:∵AB=
BC=2,∴AC==
∴AO=
AC/2=/2
∵EO⊥AC,
∴∠AOE=∠ADC=90°,
又∵∠EAO=∠CAD,
∴△AEO∽△ACD,
∴AE/AC=AO/AD
,
即AE/=/2/2
解得AE=1.5.
故选D.
点评:本题考查了矩形的性质,勾股定理,相似三角形对应边成比例的性质,根据相似三角形对应边成比例列出比例式是解题的关键.
分析:先利用勾股定理求出AC的长,然后证明△AEO∽△ACD,根据相似三角形对应边成比例列式求解即可.
解答:解:∵AB=
BC=2,∴AC==
∴AO=
AC/2=/2
∵EO⊥AC,
∴∠AOE=∠ADC=90°,
又∵∠EAO=∠CAD,
∴△AEO∽△ACD,
∴AE/AC=AO/AD
,
即AE/=/2/2
解得AE=1.5.
故选D.
点评:本题考查了矩形的性质,勾股定理,相似三角形对应边成比例的性质,根据相似三角形对应边成比例列出比例式是解题的关键.
练习册系列答案
相关题目