题目内容
如图,在梯形ABCD中,一直线分别交BA、DC的延长线于E、J,分别交AD、BD、BC于F、G、H、I,已知EF=FG=GH=HI=IJ,则等于
- A.
- B.
- C.
- D.
B
分析:根据平行线定理可得EA=DJ,EB=DJ,EA=CJ,则设CJ=2,即可求得AB、CD的长,即可求得AB:CD即可解题.
解答:∵AB∥CD,
∴EA=DJ,EB=DJ,EA=CJ,
设CJ=2,则EA=3,DJ=12,EB=8,AB=5,CD=10,
∴=.
故选 B.
点评:本题考查了平行线定理,考查了相似三角形对应边比值相等的性质,本题中求得EA=DJ、EB=DJ、EA=CJ是解题的关键.
分析:根据平行线定理可得EA=DJ,EB=DJ,EA=CJ,则设CJ=2,即可求得AB、CD的长,即可求得AB:CD即可解题.
解答:∵AB∥CD,
∴EA=DJ,EB=DJ,EA=CJ,
设CJ=2,则EA=3,DJ=12,EB=8,AB=5,CD=10,
∴=.
故选 B.
点评:本题考查了平行线定理,考查了相似三角形对应边比值相等的性质,本题中求得EA=DJ、EB=DJ、EA=CJ是解题的关键.
练习册系列答案
相关题目
如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为( )
A、3cm | B、7cm | C、3cm或7cm | D、2cm |