题目内容
设f(x)=
,定义f(1)是代数式
当x=1时的值,即f(1)=
=
,同理f(2)=
=
,f(
)=
=
,…根据此运算,求f(1)+f(
)+f(2)+f(
)+f(3)+f(
)+f(4)+…+f(
)+f(n)=______.
x2 |
x2+1 |
x2 |
x2+1 |
12 |
12+1 |
1 |
2 |
22 |
22+1 |
4 |
5 |
1 |
2 |
(
| ||
(
|
1 |
5 |
1 |
2 |
1 |
3 |
1 |
4 |
1 |
n |
由题意可知f(3)=
=
,f(
)=
=
,f(4)=
,f(
)=
,
∴f(2)+f(
)=1,f(3)+f(
)=1,f(4)+f(
)=1,…f(n)+f(
)=1,
∴原式=
+(n-1)=n-
.故答案为:n-
.
32 |
32+1 |
9 |
10 |
1 |
3 |
(
| ||
(
|
1 |
10 |
16 |
17 |
1 |
4 |
1 |
17 |
∴f(2)+f(
1 |
2 |
1 |
3 |
1 |
4 |
1 |
n |
∴原式=
1 |
2 |
1 |
2 |
1 |
2 |
练习册系列答案
相关题目