题目内容

【题目】如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是(
A.50°
B.60°
C.70°
D.80°

【答案】B
【解析】解:∵在三角形ABC中,∠ACB=90°,∠B=50°, ∴∠A=180°﹣∠ACB﹣∠B=40°.
由旋转的性质可知:
BC=B′C,
∴∠B=∠BB′C=50°.
又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,
∴∠ACB′=10°,
∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.
故选B.
由三角形的内角和为180°可得出∠A=40°,由旋转的性质可得出BC=B′C,从而得出∠B=∠BB′C=50°,再依据三角形外角的性质结合角的计算即可得出结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网