题目内容
【题目】在等边三角形ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4,有下列结论:①AE∥BC;②∠ADE=∠BDC;③△BDE是等边三角形;④△ADE的周长是9.其中,正确结论的个数是( )
A. 1B. 2C. 3D. 4
【答案】C
【解析】
由旋转的性质和等边三角形的性质易证∠BAE=∠ABC,,即可得AE∥BC,①正确;证明△BDE是等边三角形,可得 DE=BD=4,所以△AED的周长=AE+AD+DE=AC+BD=9,可得③④正确.根据已知条件无法证明②正确.
∵△ABC为等边三角形,∴∠ABC=∠C=60°,AC=BC=5.
∵△BCD绕点B逆时针旋转60°,得到△BAE,
∴∠BAE=∠C=60°,AE=CD.
∴∠BAE=∠ABC,
∴AE∥BC,所以①正确;
∵△BCD绕点B逆时针旋转60°,得到△BAE,
∴∠DBE=60°,BD=BE=4.
∴△BDE为等边三角形,所以③正确.
∵∠BDC=∠BAC+∠ABD>60°,∠ADE+∠BDC=180°-∠BDE=120°,
∴∠ADE<∠BDC,∴②一定不正确;
∵AE=CD,DE=BD=4,
∴△ADE的周长=AD+AE+DE=AD+CD+DB=AC+BD=5+4=9,所以④正确.
故选C.
练习册系列答案
相关题目
【题目】冬天,小芳给自己家刚刚装满水且显示温度为的太阳能热水器里的水加热.她每过一段时间去观察一下显示温度,并记录如下:
时间(分钟) | 0 | 5 | 10 | 15 | 20 | …… |
显示温度() | 16 | 17 | 18 | 19 | 20 | …… |
(1)请直接写出显示温度()与加热时间()之间的函数关系式;
(2)如果她给热水器设定的最高温度为,问:要加热多长时间才能达到设定的最高温度?