题目内容

【题目】如图,已知二次函数的图象过点和点,对称轴为直线

求该二次函数的关系式和顶点坐标;

结合图象,解答下列问题:

①当时,求函数的取值范围.

②当时,求的取值范围.

【答案】(1) 抛物线的顶点坐标为;(2)①当时,②当时,

【解析】

(1)把A点和C点坐标代入y=ax2+bx+c得到两个方程,再加上对称轴方程即可得到三元方程组,然后解方程组求出a、b、c即可得到抛物线解析式,再把解析式配成顶点式即可得到顶点坐标;

(2)①先分别计算出x-12时的函数值,然后根据二次函数的性质写出对应的函数值的范围;

②先计算出函数值为3所对应的自变量的值,然后根据二次函数的性质写出y<3时,x的取值范围.

解:根据题意得,解得

所以二次函数关系式为

因为

所以抛物线的顶点坐标为

①当时,时,

而抛物线的顶点坐标为,且开口向下,

所以当时,

②当时,,解得

所以当时,

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网