题目内容
【题目】如图,已知平行四边形ABCD,AC、BD相交于点O,AB=4,AC=6,BD=10.(1)求∠ACD的度数;(2)求BC的长.
【答案】(1)90°;(2) .
【解析】
(1)由平行四边形ABCD的对角线AC和BD交于点O,若AC=6,BD=10,AB=4,易求得OA与OB的长,又由勾股定理的逆定理,可证得∠BAO=90°,由AB∥CD,可得∠ACD的度数;
(2)在直角△ABC中,利用勾股定理即可求BC的长.
解:(1)∵四边形ABCD是平行四边形,且AC=6,BD=10,AB=4,
∴OA=OC=AC=3,OB=OD=5,
∴OA2+AB2=OB2,
∴△OAB是直角三角形,且∠BAO=90°,
∵AB∥CD,
∴∠ACD=∠BAO=90°;
(2)在直角△ABC中,BC= .
故答案是:(1)90°;(2) .
练习册系列答案
相关题目