题目内容
如图,在?ABCD中,E为AD边上任意一点,若?ABCD的面积为24cm2,则△BEC的面积为
- A.4cm2
- B.8cm2
- C.12cm2
- D.无法确定
C
分析:由于△BCE和?ABCD等底等高,所以S△BCE=BC•h=S?ABCD,由此可以求出△BEC的面积.
解答:设?ABCD的高为h,
∵AD∥CB,
∴S△BEC=BC•h,
而S?ABCD=BC•h,
∴S△BCE=S?ABCD,
而?ABCD的面积为24cm2,
∴S△BCE=12.
故选C.
点评:此题主要考查了平行四边形的面积公式,平行四边形的面积等于平行四边形的边长与该边上的高的积.即S=a•h.其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高.
分析:由于△BCE和?ABCD等底等高,所以S△BCE=BC•h=S?ABCD,由此可以求出△BEC的面积.
解答:设?ABCD的高为h,
∵AD∥CB,
∴S△BEC=BC•h,
而S?ABCD=BC•h,
∴S△BCE=S?ABCD,
而?ABCD的面积为24cm2,
∴S△BCE=12.
故选C.
点评:此题主要考查了平行四边形的面积公式,平行四边形的面积等于平行四边形的边长与该边上的高的积.即S=a•h.其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高.
练习册系列答案
相关题目