题目内容
【题目】有两张完全重合的矩形纸片,将其中一张绕点顺时针旋转后得到矩形(如图1),连接,,若,.
(1)试探究线段与线段的数量关系和位置关系,并说明理由;
(2)把与剪去,将绕点顺时针旋转得,边交于点(如图2),设旋转角为,当为等腰三角形时,求的度数;
(3)若将沿方向平移得到(如图3),与交于点,与交于点,当时,求平移的距离.
【答案】(1),,理由见解析;(2)或;(3)平移的距离是
【解析】
(1)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),得BD=MF,△BAD≌△MAF,推出BD=MF,∠ADB=∠AFM=30°,进而可得∠DNM的大小.
(2)分两种情形讨论①当AK=FK时,②当AF=FK时,根据旋转的性质得出结论.
(3)求平移的距离是A2A的长度.在矩形PNA2A中,A2A=PN,只要求出PN的长度就行.用△DPN∽△DAB得出对应线段成比例,即可得到A2A的大小.
(1)解:,.
延长交于点,
根据旋转的性质得:AB=AM,AD=AF,∠BAD=∠MAF=90°
∴.
∴,.
又∵,
∴,
∴,
∴
(2)解:如图2,
①当时,,
则,即;
②当时,,
∴,即;
∴的度数为或
(3)如图3,
由题意得矩形.设,则,
在中,∵,
∴,,
∴.
∵,,
∴.
∴.
∵,
∴.
∵,
∴.
∴.
∴,
解得.即.
答:平移的距离是.
练习册系列答案
相关题目