题目内容
【题目】如图,在△ABC中,∠C=90°,D、F是AB边上的两点,以DF为直径的⊙O与BC相交于点E,连接EF,过F作FG⊥BC于点G,其中∠OFE= ∠A.
(1)求证:BC是⊙O的切线;
(2)若sinB= ,⊙O的半径为r,求△EHG的面积(用含r的代数式表示).
【答案】
(1)
证明:连接OE,
∵在△ABC中,∠C=90°,FG⊥BC,
∴∠BGF=∠C=90°,
∴FG∥AC,
∴∠OFG=∠A,
∴∠OFE= ∠OFG,
∴∠OFE=∠EFG,
∵OE=OF,
∴∠OFE=∠OEF,
∴∠OEF=∠EFG,
∴OE∥FG,
∴OE⊥BC,
∴BC是⊙O的切线
(2)
解:∵在Rt△OBE中,sinB= ,⊙O的半径为r,
∴OB= r,BE= r,
∴BF=OB+OF= r,
∴FG=BFsinB= r,
∴BG= = r,
∴EG=BG﹣BE= r,
∴S△FGE= EGFG= r2,EG:FG=1:2,
∵BC是切线,
∴∠GEH=∠EFG,
∵∠EGH=∠FGE,
∴△EGH∽△FGE,
∴ =( )= ,
∴S△EHG= S△FGE= r2.
【解析】(1)首先连接OE,由在△ABC中,∠C=90°,FG⊥BC,可得FG∥AC,又由∠OFE= ∠A,易得EF平分∠BFG,继而证得OE∥FG,证得OE⊥BC,则可得BC是⊙O的切线;
(2)由在△OBE中,sinB= ,⊙O的半径为r,可求得OB,BE的长,然后由在△BFG中,求得BG,FG的长,则可求得EG的长,易证得△EGH∽△FGE,然后由相似三角形面积比等于相似比的平方,求得答案.此题考查了切线的判定、相似三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.
练习册系列答案
相关题目