题目内容
【题目】如图,在△ABC中,AB=AC,以AB为直径作圆交BC于D,过D作⊙O的切线EF交AC于E,交AB延长线于F.
(1)求证:DE⊥AC.
(2)若BD=2,tan∠CDE=,求BF的长.
【答案】(1)证明见解析;(2).
【解析】
(1)连接OD,AD,由切线的性质得出OD⊥DE,证明OD是△ABC的中位线,得出OD∥AC,即可得出结论.
(2)证∠CDE=∠DAC,由三角函数定义得出AD=2CD=.由勾股定理求出AB=10,得出OA=OD=OB=5,AC=AB=10,证明△AEF~△ODF,进而得出答案.
(1)证明:连接OD,AD,如图:
∵EF是⊙O的切线,
∴OD⊥DE,
∵AB是⊙O的直径,
∴∠ADB=90°,即AD⊥BC,
∵AB=AC,
∴BD=DC,
又∵OB=OA,
∴OD是△ABC的中位线,
∴OD∥AC,
∴DE⊥AC.
(2)解:由(1)得,
∵DE⊥AC,AD⊥BC,
∴∠CDE+∠C=90°,∠DAC+∠C=90°,
∴∠CDE=∠DAC,
∴,
∴,
∴,
在Rt△ABD中,,
∴OA=OD=OB=5,AC=AB=10,
在Rt△CDE中,DE2+CE2=CD2,
∴,
解得CE=2,
∴AE=AC﹣CE=10﹣2=8,
∵∠AEF=∠ODF=90°,∠F=∠F,
∴△AEF~△ODF,
∴,即,
解得:.
练习册系列答案
相关题目