题目内容

已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.

(1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;
(2)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.
(1)30°   (2)18°

试题分析:(1)如图①,首先连接OC,根据当直线l与⊙O相切于点C,AD⊥l于点D.易证得OC∥AD,继而可求得∠BAC=∠DAC=30°;
(2)如图②,连接BF,由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠AFB=90°,由三角形外角的性质,可求得∠AEF的度数,又由圆的内接四边形的性质,求得∠B的度数,继而求得答案.
试题解析:(1)如图①,连接OC,
∵直线l与⊙O相切于点C,
∴OC⊥l,
∵AD⊥l,
∴OC∥AD,
∴∠OCA=∠DAC,
∵OA=OC,
∴∠BAC=∠OCA,
∴∠BAC=∠DAC=30°;
(2)如图②,连接BF,
∵AB是⊙O的直径,
∴∠AFB=90°,
∴∠BAF=90°﹣∠B,
∴∠AEF=∠ADE+∠DAE=90°+18°=108°,
在⊙O中,四边形ABFE是圆的内接四边形,
∴∠AEF+∠B=180°,
∴∠B=180°﹣108°=72°,
∴∠BAF=90°﹣∠B=90°﹣72°=18°.

考点: 1.切线的性质;2.圆周角定理;3.直线与圆的位置关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网