题目内容

【题目】四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的半圆过点E,圆心为O.
(1)利用图1,求证:四边形ABCD是菱形.
(2)如图2,若CD的延长线与半圆相切于点F,已知直径AB=8. ①连结OE,求△OBE的面积.
②求弧AE的长.

【答案】
(1)解:∵AE=EC,BE=ED,

∴四边形ABCD是平行四边形.

∵AB为直径,且过点E,

∴∠AEB=90°,即AC⊥BD.

∵四边形ABCD是平行四边形,

∴四边形ABCD是菱形.


(2)解:①连结OF.

∵CD的延长线与半圆相切于点F,

∴OF⊥CF.

∵FC∥AB,

∴OF即为△ABD中AB边上的高.

∴SABD= AB×OF= ×8×4=16,

∵点O是AB中点,点E是BD的中点,

∴SOBE= SABD=4.

②过点D作DH⊥AB于点H.

∵AB∥CD,OF⊥CF,

∴FO⊥AB,

∴∠F=∠FOB=∠DHO=90°.

∴四边形OHDF为矩形,即DH=OF=4.

∵在Rt△DAH中,sin∠DAB= =

∴∠DAH=30°.

∵点O,E分别为AB,BD中点,

∴OE∥AD,

∴∠EOB=∠DAH=30°.

∴∠AOE=180°﹣∠EOB=150°.

∴弧AE的长= =


【解析】(1)先由AE=EC、BE=ED可判定四边形为平行四边形,再根据∠AEB=90°可判定该平行四边形为菱形;(2)①连结OF,由切线可得OF为△ABD的高且OF=4,从而可得SABD , 由OE为△ABD的中位线可得SOBE= SABD; ②作DH⊥AB于点H,结合①可知四边形OHDF为矩形,即DH=OF=4,根据sin∠DAB= = 知∠EOB=∠DAH=30°,即∠AOE=150°,根据弧长公式可得答案

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网