题目内容
【题目】函数y=x2+bx+c与y=x的图象如图所示,有以下结论: ①b2﹣4c>0;
②b+c+1=0;
③3b+c+6=0;
④当1<x<3时,x2+(b﹣1)x+c<0.
其中正确的个数为( )
A.1个
B.2个
C.3个
D.4个
【答案】B
【解析】解:∵函数y=x2+bx+c与x轴无交点, ∴b2﹣4ac<0;
故①错误;
当x=1时,y=1+b+c=1,
故②错误;
∵当x=3时,y=9+3b+c=3,
∴3b+c+6=0;
③正确;
∵当1<x<3时,二次函数值小于一次函数值,
∴x2+bx+c<x,
∴x2+(b﹣1)x+c<0.
故④正确.
故选B
由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.
练习册系列答案
相关题目
【题目】某中学八年级班数学课外兴趣小组在探究:“边形共有多少条对角线”这一问题时,设计了如下表格:
多边形的边数 | … | |||||
从多边形一个顶点出发可引起的对角线条数 | … | |||||
多边形对角线的总条数 | … |
探究:假若你是该小组的成员,请把你研究的结果填入上表;
猜想:随着边数的增加,多边形对角线的条数会越来越多,从边形的一个顶点出发可引的对角线条数为多少,边形对角线的总条数为多少.
应用:个人聚会,每不相邻的人都握一次手,共握多少次手?