题目内容
【题目】阅读思考
我们知道,在数轴上|a|表示数a所对应的点到原点的距离,这是绝对值的几何意义,由此我们可进一步地来研究数轴上任意两个点之间的距离,一般地,如果数轴上两点A、B 对立的数用a,b表示,那么这两个点之间的距离AB=|a﹣b|.也可以用两点中右边的点所表示数的减去左边的点所表示的数来计算,例如:数轴上P,Q两点表示的数分别是﹣1和2,那么P,Q两点之间的距离就是 PQ=2﹣(﹣1)=3.
启发应用
如图,点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0
(1)求线段AB的长;
(2)如图,点C在数轴上对应的数为x,且x是方程2x+1=x﹣8的解,
①求线段BC的长;
②在数轴上是否存在点P使PA+PB=BC?若存在,直接写出点P对应的数:若不存在,说明理由.
【答案】(1)5; (2)①8;②存在点P,当点P对应的数是3.5或﹣4.5使PA+PB=BC
【解析】
(1)利用非负数的性质求出a与b的值,即可确定出AB的长;
(2)①求出方程的解得到x的值,进而确定出BC的长;
②存在,求出P点对应的数即可.
(1)由题意得|a+3|+(b-2)2=0,
所以a+3=0,b-2=0,
解得,a=-3,b=2,
所以AB=2-(-3)=5;
(2)①2x+1=x-8,
解得,x=-6,
∴BC=2-(-6)=8,
即线段BC的长为8;
②存在点P,当点P对应的数是3.5或-4.5使PA+PB=BC.
练习册系列答案
相关题目