题目内容

【题目】分块计数法:对有规律的图形进行计数时,有些题可以采用分块计数的方法.

例如:图16个点,图212个点,图318个点,……,按此规律,求图10、图n有多少个点?

我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是      

请你参考以上分块计数法,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:

(1)第5个点阵中有   个圆圈;第n个点阵中有   个圆圈.

(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.

【答案】60个,6n;(1)61;3n2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵.

【解析】根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n

(1)第2个图中2为一块,分为3块,余1,

2个图中3为一块,分为6块,余1;

按此规律得:第5个点阵中5为一块,分为12块,余1,得第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,

(2)代入271,列方程,方程有解则存在这样的点阵.

10中黑点个数是6×10=60个;图n中黑点个数是6n

故答案为:60个,6n

(1)如图所示:第1个点阵中有:1个,

2个点阵中有:2×3+1=7个,

3个点阵中有:3×6+1=17个,

4个点阵中有:4×9+1=37个,

5个点阵中有:5×12+1=60个,

n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,

故答案为:60,3n2﹣3n+1;

(2)3n2﹣3n+1=271,

n2﹣n﹣90=0,

(n﹣10)(n+9)=0,

n1=10,n2=﹣9(舍),

∴小圆圈的个数会等于271,它是第10个点阵.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网