题目内容
【题目】古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )
A. 13=3+10 B. 25=9+16 C. 36=15+21 D. 49=18+31
【答案】C
【解析】题目中“三角形数”的规律为1、3、6、10、15、21…“正方形数”的规律为1、4、9、16、25…,根据题目已知条件:从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.可得出最后结果.
解:这些三角形数的规律是: 1, 2 ,3 ,4, 5, 6, 7, 8,
其正方形数是这串数中相邻两数之和,
很容易看到:恰有15+21=36.
故选C.
“点睛”本题考查探究、归纳的数学思想方法.本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题
练习册系列答案
相关题目