题目内容
【题目】在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.
(1)已知点A(1,0),B(0,),则以AB为边的“坐标菱形”的最小内角为______;
(2)若点C(2,1),点D在直线y=5上,以CD为边的坐标菱形”为正方形,求育直线CD表达式;
(3)⊙O的半径为,点P的坐标为(3,m),若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.
【答案】(1)60°;(2)y=x-1或y=-x+3;(3)m的取值范围是1≤m≤5或-5≤m≤-1.
【解析】
(1)根据定义建立以AB为边的“坐标菱形”,由勾股定理求边长AB=4,可得30度角,从而得最小内角为60°;
(2)先确定直线CD与直线y=5的夹角是45°,得D(6,5)或(-2,5),易得直线CD的表达式为:y=x-1或y=-x+3;
(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3,根据等腰直角三角形的性质分别求P'B=BD=1,PB=5,写出对应P的坐标;
②先作直线y=-x,再作圆的两条切线,且平行于直线y=-x,如图4,同理可得结论.
解:(1)如图1中,
点A(1,0),B(0,),
∴OA=1,OB=,
在Rt△AOB中,由勾股定理得:AB==2,
∵sin∠ABO==,
∴∠ABO=30°,
∵四边形ABCD是菱形,
∴∠ABC=2∠ABO=60°,
∵AB∥CD,
∴∠DCB=180°-60°=120°,
∴以AB为边的“坐标菱形”的最小内角为60°,
故答案为:60°;
(2)如图2中,
∵以CD为边的“坐标菱形”为正方形,
∴直线CD与直线y=5的夹角是45°.
过点C作CE⊥DE于E.
∴D(6,5)或(-2,5).
∴直线CD的表达式为:y=x-1或y=-x+3;
(3)分两种情况:
①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3,
∵⊙O的半径为,且△OQ'D是等腰直角三角形,
∴OD=OQ'=2,
∴P'D=3-2=1,
∵△P'DB是等腰直角三角形,
∴P'B=BD=1,
∴P'(0,1),
同理可得:OA=2,
∴AB=3+2=5,
∵△ABP是等腰直角三角形,
∴PB=5,
∴P(0,5),
∴当1≤m≤5时,以QP为边的“坐标菱形”为正方形;
②先作直线y=-x,再作圆的两条切线,且平行于直线y=-x,如图4,
∵⊙O的半径为,且△OQ'D是等腰直角三角形,
∴OD=OQ'=2,
∴BD=3-2=1,
∵△P'DB是等腰直角三角形,
∴P'B=BD=1,
∴P'(0,-1),
同理可得:OA=2,
∴AB=3+2=5,
∵△ABP是等腰直角三角形,
∴PB=5,
∴P(0,-5),
∴当-5≤m≤-1时,以QP为边的“坐标菱形”为正方形;
综上所述,m的取值范围是1≤m≤5或-5≤m≤-1.