题目内容
【题目】如图,Rt△ABC中,∠BAC=90°,AB=6,sinC=,以点A为圆心,AB长为半径作弧交AC于M,分别以B、M为圆心,以大于BM长为半径作弧,两弧相交于点N,射线AN与BC相交于D,则AD的长为_____.
【答案】
【解析】
过D作DE⊥AB于E,DF⊥AC于F,设AE=DE=AF=DF=x,则BE=6﹣x,CF=8﹣x,依据∠B=∠FDC,∠BDE=∠C,可得△BDE∽△DCF,依据相似三角形对应边成比例,即可得到AE的长,进而得出AD的长.
如图,过D作DE⊥AB于E,DF⊥AC于F,由题可得:AD平分∠BAC,∠BAC=90°,∴四边形AEDF是正方形,∴DE=DF,∠BAD=45°=∠ADE,∴AE=DE=AF=DF.
∵∠BAC=90°,AB=6,sinC,∴BC=10,AC=8,设AE=DE=AF=DF=x,则BE=6﹣x,CF=8﹣x.
∵∠B=∠FDC,∠BDE=∠C,∴△BDE∽△DCF,∴,即,解得:x,∴AE,∴Rt△ADE中,ADAE.
故答案为:.
练习册系列答案
相关题目