题目内容
【题目】如图,在平面直角坐标系中,直线y=与抛物线y=交于A、B两点,且点A在x轴上,点B的横坐标为-4,点P为直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线交直线AB于点Q,PH⊥AB于H.
(1)求b的值及sin∠PQH的值;
(2)设点P的横坐标为t,用含t的代数式表示点P到直线AB的距离PH的长,并求出PH之长的最大值以及此时t的值;
(3)连接PB,若线段PQ把△PBH分成成△PQB与△PQH的面积相等,求此时点P的坐标.
【答案】(1)b=-1,;(2),当t=-1时,PH有最大值为;(3)P(-3,0).
【解析】
(1)令y=0,求出点A的坐标,然后把点A的坐标代入直线解析式,求出点B的值,然后根据点A和点C的坐标,求出OA和OC的长度,根据勾股定理求出AC的长度,根据PQ∥OC,可得∠PQH=∠OCA,然后求出sin∠PQH的值;
(2)求出点P和点Q的坐标,运用三角函数,求出PH的函数关系式,运用求最大值的方法求解即可.
(3)作BD⊥PQ交PQ的延长线于点D,由S△PQB=S△PQH,得出BQ=QH,利用三角函数求出QH和BQ的关系式,运用相等的关系求出t,即可得出点P的坐标.
解:(1)令y=0得:,化简x2+x-6=0,解得x1=-3,x2=2,
∴A(2,0),
∵A(2,0)在直线上,
∴1+b=0,解得b=-1,
∴OC=1,OA=2,
,
∵PQ∥OC,
∴∠PQH=∠OCA,
,
(2),
,
,
,
∴当t=-1时,PH有最大值为,
(3)如图,作BD⊥PQ交PQ的延长线于点D,设点P的横坐标为t,
∵S△PQB=S△PQH,
∴BQ=QH,
在RT△PHQ中,
,
,
,
在RT△BDQ中,
∵∠BQD=∠PQH,
,
,
,
,
,
∴t2+7t+12=0,
∴t1=-3,t2=-4(舍去),
∴P(-3,0).