题目内容

【题目】如图,一水库大坝的横断面为梯形ABCD,坝顶宽6米,坝高10米,斜坡AB的坡度i1=1:3,斜坡CD的坡度i2=1:1.

(1)求斜坡AB的长(结果保留根号);

(2)求坝底AD的长度;

(3)求斜坡CD的坡角α.

【答案】(1)斜坡AB的长为10m;(2)坝底AD的长度为46m;(3)α=45°

【解析】

(1)根据坡度的概念求出AE的长,根据勾股定理求出AB的长;
(2)分别得出DF,EF的长,进而得出答案;
(3)根据坡度是坡角的正切值计算即可.

(1)过点B,作BE⊥AD于点E,

∵坝高10米,斜坡AB的坡度i1=13

=

=

解得:AE=30m,

则AB==10m),

答:斜坡AB的长为10m

(2)过点C作CF⊥AD于点F,

∵斜坡CD的坡度i2=1:1,坝高10米,

BC=EF=6mCF=FD=10m

AD=AE+EF+FD=30+6+10=46m),

答:坝底AD的长度为46m;

3)∵斜坡CD的坡度i2=11

∴斜坡CD的坡角α为:tanα=1,

则α=45°

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网