题目内容
如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中-1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<-1,其中结论正确的有( )
A.1个 | B.2个 | C.3个 | D.4个 |
由抛物线的开口向下知a<0,
与y轴的交点为在y轴的正半轴上,得c>0,
对称轴为x=-
<1,
∵a<0,
∴2a+b<0,
而抛物线与x轴有两个交点,∴b2-4ac>0,
当x=2时,y=4a+2b+c<0,
当x=1时,a+b+c=2.
∵
>2,
∴b2+8a>4ac,
∵①a+b+c=2,则2a+2b+2c=4,
②4a+2b+c<0,
③a-b+c<0.
由①,③得到2a+2c<2,
由①,②得到2a-c<-4,4a-2c<-8,
上面两个相加得到6a<-6,
∴a<-1.
故选D.
与y轴的交点为在y轴的正半轴上,得c>0,
对称轴为x=-
b |
2a |
∵a<0,
∴2a+b<0,
而抛物线与x轴有两个交点,∴b2-4ac>0,
当x=2时,y=4a+2b+c<0,
当x=1时,a+b+c=2.
∵
4ac-b2 |
4a |
∴b2+8a>4ac,
∵①a+b+c=2,则2a+2b+2c=4,
②4a+2b+c<0,
③a-b+c<0.
由①,③得到2a+2c<2,
由①,②得到2a-c<-4,4a-2c<-8,
上面两个相加得到6a<-6,
∴a<-1.
故选D.
练习册系列答案
相关题目