题目内容
【题目】如图所示:△ABC是等腰直角三角形,BC=AC,直角顶点C在x轴上,一锐角顶点B在y轴上
(1)如图1所示,若C的坐标是(2,0),点A的坐标是(﹣2,﹣2),求点B的坐标.
(2)如图2,若y轴恰好平分∠ABC,AC与y轴交于点D,过点A作AE⊥y轴 于E,求证:BD = 2AE
【答案】(1)B(0,4);(2)证明见解析.
【解析】
(1)过点A作AD⊥OC,可证△ADC≌△COB,根据全等三角形对应边相等即可解题;
(2)延长BC,AE交于点F,可证△ACF≌△BCD,△ABE≌△FBE,即可求得BD=2AE.
(1)过点A作AD垂直OC于D.
∵∠DAC+∠ACD=90°,∠ACD+∠BCD=90°,
∴∠BCD=∠DAC.
在△ADC和△COB中,
∵,
∴△ADC≌△COB(AAS),
∴AD=OC,CD=OB.
∵A(-2,-2),C(2,0),
∴OD=2,OC=2,
∴OB=CD=2+2=4,
∴点B坐标为(0,4);
(2)延长BC,AE交于点F.
∵AC=BC,AC⊥BC,∴∠BAC=∠ABC=45°.
∵BD平分∠ABC,
∴∠CBD=∠ABD=∠ABC=22.5°,∠DAE=90°﹣∠ABD﹣∠BAC=22.5°,
∴∠DAE=∠CBD=∠CAF.
在△ACF和△BCD中,
∵,
∴△ACF≌△BCD(ASA),∴AF=BD,
在△ABE和△FBE中,
∵,
∴△ABE≌△FBE(ASA),
∴AE=EF,
∴BD=2AE.
练习册系列答案
相关题目