题目内容
【题目】如图,在边长为1的正方形网格中,A(2,4),B(4,1),C(-3,4)
(1)平移线段AB到线段CD,使点A与点C重合,写出点D的坐标.
(2)直接写出线段AB平移至线段CD处所扫过的面积.
(3)平移线段AB,使其两端点都在坐标轴上,则点A的坐标为
【答案】(1)(-1,1);(2)15;(3)(0,3)或(-2,0)
【解析】
(1)根据点A与点C的坐标得出坐标变化规律,从而得到点D的坐标;
(2)根据平移的性质得出ABDC是平行四边形,根据平行四边形的面积公式列式计算即可;
(3)分两种情况:①平移后A的对应点在y轴上,B的对应点在x轴上;②平移后A的对应点在x轴上,B的对应点在y轴上.
(1)∵平移线段AB到线段CD,使点A与点C重合,A(2,4),C(-3,4),
∴坐标变化规律是:横坐标减去5,纵坐标不变,∵B(4,1),∴点D的坐标为(-1,1);
(2)∵平移线段AB到线段CD,∴AB∥CD,AB=CD,
∴四边形ABDC是平行四边形,∴线段AB平移至线段CD处所扫过的面积为:5×3=15;
(3)分两种情况:①如果平移后A的对应点在y轴上,B的对应点在x轴上,
那么坐标变化规律是:横坐标减去2,纵坐标减去1,
∵A(2,4),∴平移后点A的坐标为(0,3)
②如果平移后A的对应点在x轴上,B的对应点在y轴上,
那么坐标变化规律是:横坐标减去4,纵坐标减去4,∵A(2,4),∴平移后点的坐标为(-2,0);
故答案为(0,3)或(-2,0).
练习册系列答案
相关题目