题目内容
【题目】已知如图所示,在Rt△ABC中,∠A=90°,∠BCA=75°,AC=8cm,DE垂直平分BC,则BE的长是( )
A.4cmB.8cmC.16cmD.32cm
【答案】C
【解析】
连接CE,先由三角形内角和定理求出∠B的度数,再由线段垂直平分线的性质及三角形外角的性质求出∠CEA的度数,由直角三角形中30°所对的直角边是斜边的一半即可解答.
解:连接CE,
∵Rt△ABC中,∠A=90°,∠BCA=75°,
∴∠B=90°﹣∠BCA=90°﹣75°=15°,
∵DE垂直平分BC,
∴BE=CE,
∴∠BCE=∠B=15°,
∴∠AEC=∠BCE+∠B=30°,
∵Rt△AEC中,AC=8cm,
∴CE=2AC=16cm,
∵BE=CE,
∴BE=16cm.
故选:C.
练习册系列答案
相关题目
【题目】某工厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:
销售单价(元/件) | … | 30 | 40 | 50 | 60 | … |
每天销售量(件) | … | 500 | 400 | 300 | 200 | … |
(1)研究发现,每天销售量与单价满足一次函数关系,求出与的关系式;
(2)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润8000元?