题目内容
【题目】为迎接年中、日、韩三国青少年橄榄球比赛,南雅中学计划对面积为运动场进行塑胶改造.经投标,由甲、乙两个工程队来完成,已知甲队每天能改造的面积是乙队每天能改造面积的倍,并且在独立完成面积为的改造时,甲队比乙队少用天.
(1)求甲、乙两工程队每天能完成塑胶改造的面积;
(2)设甲工程队施工天,乙工程队施工天,刚好完成改造任务,求与的函数解析式;
(3)若甲队每天改造费用是万元,乙队每天改造费用是万元,且甲、乙两队施工的总天数不超过天,如何安排甲、乙两队施工的天数,使施工总费用最低?并求出最低的费用.
【答案】(1)甲、乙工程队每天能完成绿化的面积分别是、;(2);(3)安排甲队施工天,乙队施工天,施工总费用最低,最低费用为万元.
【解析】
(1)设乙工程队每天能完成绿化的面积是m2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列方程求解;
(2)根据题意得到100x+50y=2400,整理得:y=-2x+48,即可解答;
(3)根据甲乙两队施工的总天数不超过30天,得到x≥18,设施工总费用为w元,根据题意得:,根据一次函数的性质,即可解答.
(1)设乙工程队每天能完成绿化面积是,
根据题意得:,
解得:,
经检验,是原方程的解,
则甲工程队每天能完成绿化的面积是
答:甲、乙工程队每天能完成绿化的面积分别是、;
(2)根据题意得:,
整理得:,
∴y与x的函数解析式为:.
(3)∵甲乙两队施工的总天数不超过30天,
∴,
∴,
解得:,
设施工总费用为元,根据题意得:
,
∵,
∴随的增大而增大,
当时,有最小值,最小值为万元,
此时,,
答:安排甲队施工天,乙队施工天,施工总费用最低,最低费用为万元.
【题目】如图,在⊙中,AB是直径,BC是弦,BC=BD,连接CD交⊙于点E,∠BCD=∠DBE.
(1)求证:BD是⊙的切线.
(2)过点E作EF⊥AB于F,交BC于G,已知DE=,EG=3,求BG的长.