题目内容
【题目】如图1,在菱形ABCD中,∠A=120°,点E是BC边的中点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H是图象上的最低点,则a+b的值为( )
A.7B.C.D.
【答案】C
【解析】
由A、C关于BD对称,推出PA=PC,推出PC+PE=PA+PE,推出当A、P、E共线时,PE+PC的值最小,观察图象可知,当点P与B重合时,PE+PC=6,推出BE=CE=2,AB=BC=4,分别求出PE+PC的最小值,PD的长即可解决问题.
解:∵在菱形ABCD中,∠A=120°,点E是BC边的中点,
∴易证AE⊥BC,
∵A、C关于BD对称,
∴PA=PC,
∴PC+PE=PA+PE,
∴当A、P、E共线时,PE+PC的值最小,即AE的长.
观察图象可知,当点P与B重合时,PE+PC=6,
∴BE=CE=2,AB=BC=4,
∴在Rt△AEB中,BE=,
∴PC+PE的最小值为,
∴点H的纵坐标a=,
∵BC∥AD,
∴ =2,
∵BD=,
∴PD=,
∴点H的横坐标b=,
∴a+b=;
故选C.
【题目】若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数的图象与性质.列表:
x | … | 0 | 1 | 2 | 3 | … | |||||||||
y | … | 1 | 2 | 1 | 0 | 1 | 2 | … |
描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示.
(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;
(2)研究函数并结合图象与表格,回答下列问题:
①点,,,在函数图象上, , ;(填“>”,“=”或“<”)
②当函数值时,求自变量x的值;
③在直线的右侧的函数图象上有两个不同的点,,且,求的值;
④若直线与函数图象有三个不同的交点,求a的取值范围.
【题目】某体育用品商店销售A,B两种型号的运动鞋,这两种运动鞋的进价与售价如下表,2018年第一季度的总利润为50 000元,其各月份的月利润占季度总利润的百分比如下图.
两种运动鞋的进价与售价表
A型号运动鞋 | B型号运动鞋 | |
进价(元/双) | 200 | 220 |
售价(元/双) | 250 | 280 |
(1)1月份的销售利润为 元;2月份的销售利润为 元,3月份的销售利润为_________元.
(2)如果A型运动鞋的2月份销量比1月份提高了20%,B型运动鞋的2月份销量是1月份的1.5倍,求1月份A、B两种运动鞋的销售量.
(3)已知3月份A型运动鞋的销售量超过B型运动鞋的销售量,问最多可能卖出B型运动鞋多少双.