题目内容
【题目】在创客教育理念的指引下,国内很多学校都纷纷建立创客实践空及创客空间,致力于从小培养孩子的创新精神和创造能力,某校开设了“3D”打印、数学编程、智能机器人、陶艺制作“四门创客课程记为A、B、C、D,为了解学生对这四门创客课程的喜爱情况,数学兴趣小组对全校学生进行了随机问卷调查,将调查结果整理后绘制成两幅均不完整的统计图表:
请根据图表中提供的信息回答下列问题
(1)統计表中的a= ,b= ;
(2)“陶艺制作”对应扇形的圆心角为 ;
(3)学校为开设这四门课程,需要对参加“3D”打印课程每个人投资200元,预计A、B、C、D四门课程每人投资比为4:3:6:5,求学校开设创客课程需为学生人均投资多少钱?
【答案】(1)80,0.2;(2)36°;(3)212.5元
【解析】
(1)根据“3D”打印的频数和频率可以求得a的值,然后根据b对应的频数即可求得b的值;
(2)根据频数分布表中的数据可以求得“陶艺制作”对应扇形的圆心角的度数;
(3)根据题意和题目中的数据,可以求得学校为开设创客课程,需为学生人均投入多少钱.
解:(1)a=36÷0.45=80,
b=16÷80=0.2,
故答案为:80,0.2;
(2)“陶艺制作”对应扇形的圆心角为:360°×=36°,
故答案为:36°;
(3)∵每生A、B、C、D四科投资比为4:3:6:5,“3D打印课程每人投资200元,
∴每生A、B、C、D四科投资分别为:200元、150元、300元、250元,(200×36)+150×(80×0.25)+300×16+250×8=212.5(元),
即学校为开设创客课程,需为学生人均投入212.5元.
【题目】某公司为了到高校招聘大学生,为此设置了三项测试:笔试、面试、实习.学生的最终成绩由笔试面试、实习依次按3:2:5的比例确定.公司初选了若干名大学生参加笔试,面试,并对他们的两项成绩分别进行了整理和分析.下面给出了部分信息:
①公司将笔试成绩(百分制)分成了四组,分别为A组:60≤x<70,B组:70≤x<80,C组:80≤x<90,D组:90≤x<100;并绘制了如下的笔试成绩频数分布直方图.其中,C组的分数由低到高依次为:80,81,82,83,83,84,84,85,86,88,88,88,89.
②这些大学生的笔试、面试成绩的平均数、中位数、众数、最高分如下表:
平均数 | 中位数 | 众数 | 最高分 | |
笔试成绩 | 81 | m | 92 | 97 |
面试成绩 | 80.5 | 84 | 86 | 92 |
根据以上信息,回答下列问题:
(1)这批大学生中笔试成绩不低于88分的人数所占百分比为 .
(2)m= 分,若甲同学参加了本次招聘,他的笔试、面试成绩都是83分,那么该同学成绩排名靠前的是 成绩,理由是 .
(3)乙同学也参加了本次招聘,笔试成绩虽不是最高分,但也不错,分数在D组;面试成绩为88分,实习成绩为80分由表格中的统计数据可知乙同学的笔试成绩为 分;若该公司最终录用的最低分数线为86分,请通过计算说明,该同学最终能否被录用?