题目内容
【题目】如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.
(1)若∠AOC=76°,求∠BOF的度数;
(2)若∠BOF=36°,求∠AOC的度数;
(3)若|∠AOC﹣∠BOF|=α°,请直接写出∠AOC和∠BOF的度数.(用含的代数式表示)
【答案】(1)∠BOF=33°;(2)∠AOC=72°;(3) ∠AOC=2x=()°﹣α°,∠BOF=()°+α°.
【解析】试题分析:
(1)由∠AOC=76°易得∠BOD=76°,结合OE平分∠BOD可得∠DOE=∠BOE=38°,由此可得∠COE=180°-38°=142°,结合OF平分∠COE可得∠EOF=71°,最后由∠BOF=∠EOF-∠BOE即可求得∠BOF的度数;
(2)设∠BOE=x,由OE平分∠BOD,∠AOC=∠BOD可得∠DOE=∠BOE=x,∠AOC=2x,结合∠BOF=36°,OF平均∠EOF可得∠COF=∠EOF=x+36°,最后由∠AOC+∠COF+∠BOF=180°即可列出关于x的方程,解方程求得x的值即可求得∠AOC的度数;
(3)设∠BOE=x,则由已知条件易得∠AOC=2x,∠BOF=90°-x,这样结合|∠AOC﹣∠BOF|=α°即可列出关于x的方程,解方程求得x的值即可求得∠AOC和∠BOF的值.
试题解析:
(1)∵∠BOD=∠AOC=76°,
又∵OE平分∠BOD,
∴∠DOE=∠BOD=×76°=38°.
∴∠COE=180°﹣∠DOE=180°﹣38°=142°,
∵OF平分∠COE,
∴∠EOF=∠COE=×142°=71°,
∴∠BOF=∠EOF﹣∠BOE=71°﹣38°=33°.
(2)∵OE平分∠BOD,OF平分∠COE,
∴∠BOE=∠EOD,∠COF=∠FOE,
∴设∠BOE=x,则∠DOE=x,
故∠COA=2x,∠EOF=∠COF=x+36°,
则∠AOC+∠COF+∠BOF=2x+x+36°+36°=180°,
解得:x=36°,
故∠AOC=72°.
(3)设∠BOE=x,
∵OE平分∠BOD,∠BOD=∠AOC,
∴∠DOE=x,∠COA=2x,
∴∠BOC=180°-2x,
∴∠COE=180°-x,
∵OF平分∠COE,
∴∠EOF=90°-x,
∴∠BOF=90°﹣x,
∵|∠AOC﹣∠BOF|=α°,
∴|2x﹣(90°﹣x)|=α°,
解得:x=()°+α°或x=()°﹣α°,
当x=()°+α°时,
∠AOC=2x=()°+α°,
∠BOF=90°﹣x=()°﹣α°;
当x=()°﹣α°时,
∠AOC=2x=()°﹣α°,
∠BOF=90°﹣x=()°+α°.