题目内容
【题目】四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:
(1)本次接受随机抽样调查的学生人数为 ,图①中m的值是 ;
(2)求本次调查获取的样本数据的平均数、众数和中位数;
(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.
【答案】解:(1)50; 32。
(2)∵,
∴这组数据的平均数为:16。
∵在这组样本数据中,10出现次数最多为16次,
∴这组数据的众数为:10。
∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,
∴这组数据的中位数为:,
(3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,
∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数有1900×32%=608(人。
∴该校本次活动捐款金额为10元的学生约有608人。
【解析】
试题(1)根据条形统计图即可得出样本容量:4+16+12+10+8=50(人);
根据扇形统计图得出m的值:。
(2)利用平均数、中位数、众数的定义分别求出即可。
(3)根据样本中捐款10元的百分比,从而得出该校本次活动捐款金额为10元的学生人数。
练习册系列答案
相关题目
【题目】八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲队成绩的中位数是 分,乙队成绩的众数是 分;
(2)计算乙队的平均成绩和方差;
(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是 队.