题目内容
【题目】某县在实施“村村通”工程中,决定在A、B两村之间修一条公路,甲、乙两个工程队分别从A、B两村同时开始相向修路,施工期间,甲队改变了一次修路速度,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到公路修通,甲、乙两个工程队各自所修公路的长度y(米)与修路时间x(天)之间的函数图象如图所示.
(1)求甲队前8天所修公路的长度;
(2)求甲工程队改变修路速度后y与x之间的函数关系式;
(3)求这条公路的总长度.
【答案】(1)560米.(2)y=50x+160(4≤x≤16).(3)这条公路的总长度为1800米.
【解析】
试题分析:(1)由函数图象在x=8时相交可知:前8天甲、乙两队修的公路一样长,结合修路长度=每日所修长度×修路天数可计算出乙队前8天所修的公路长度,从而得出结论;
(2)设甲工程队改变修路速度后y与x之间的函数关系式为y=kx+b,代入图象中点的坐标可列出关于k和b的二元一次方程组,解方程组即可得出结论;
(3)由图象可知乙队修的公路总长度,再根据(2)得出的解析式求出甲队修的公路的总长度,二者相加即可得出结论.
试题解析:(1)由图象可知前八天甲、乙两队修的公路一样长,
乙队前八天所修公路的长度为840÷12×8=560(米),
答:甲队前8天所修公路的长度为560米.
(2)设甲工程队改变修路速度后y与x之间的函数关系式为y=kx+b,
将点(4,360),(8,560)代入,得
,解得
.
故甲工程队改变修路速度后y与x之间的函数关系式为y=50x+160(4≤x≤16).
(3)当x=16时,y=50×16+160=960;
由图象可知乙队共修了840米.
960+840=1800(米).
答:这条公路的总长度为1800米.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目