题目内容
【题目】问题探究:
(1)如图①所示是一个半径为,高为4的圆柱体和它的侧面展开图,AB是圆柱的一条母线,一只蚂蚁从A点出发沿圆柱的侧面爬行一周到达B点,求蚂蚁爬行的最短路程.(探究思路:将圆柱的侧面沿母线AB剪开,它的侧面展开图如图①中的矩形则蚂蚁爬行的最短路程即为线段的长)
(2)如图②所示是一个底面半径为,母线长为4的圆锥和它的侧面展开图,PA是它的一条母线,一只蚂蚁从A点出发沿圆锥的侧面爬行一周后回到A点,求蚂蚁爬行的最短路程.
(3)如图③所示,在②的条件下,一只蚂蚁从A点出发沿圆锥的侧面爬行一周到达母线PA上的一点,求蚂蚁爬行的最短路程.
【答案】(1)蚂蚁爬行的最短路程为5; (2)最短路程为;(3)蚂蚁爬行的最短距离为
【解析】
(1)蚂蚁爬行的最短路程为圆柱侧面展开图即矩形的对角线的长度,由勾股定理可求得;
(2)蚂蚁爬行的最短路程为圆锥展开图中的AA′的连线,可求得△PAA′是等边三角形,则AA′=PA=4;
(3)蚂蚁爬行的最短路程为圆锥展开图中点A到PA的距离.
(1)由题意可知:
在 中,
即蚂蚁爬行的最短路程为5.
(2)连结则的长为蚂蚁爬行的最短路程,设为圆锥底面半径,为侧面展开图(扇形)的半径,
则由题意得:
即
是等边三角形
最短路程为
(3)如图③所示是圆锥的侧面展开图,过作于点则线段的长就是蚂蚁爬行的最短路程.
在Rt△ACP中,
∵∠P=60°,
∴∠PAC=30°
∴PC=PA=×4=2
∴AC==
蚂蚁爬行的最短距离为
练习册系列答案
相关题目