题目内容

【题目】两个长为2,宽为1的矩形ABCD和矩形EFGH如图1所示摆放在直线l上,DE=2,将矩形ABCD绕点D顺时针旋转α角(0°<α<90°),将矩形EFGH绕点E逆时针旋转相同的角度.在旋转的过程中,利用图2思考:当矩形ABCD和矩形EFGH重合部分为正方形时,α=_____°.

【答案】45.

【解析】

由四边形MFNC为正方形,而矩形ABCD绕点D顺时针旋转和矩形EFGH绕点E逆时针旋转相同的角度.得到NF=NC,∠FNC=90°,则∠DNE=90°,ND=NE,得到∠NDE=∠NED=45°,所以∠ =180°-90°-45°=45°,可得答案.

∵四边形MFNC为正方形,而矩形ABCD绕点D顺时针旋转和矩形EFGH绕点E逆时针旋转相同的角度,

∴NF=NC,∠FNC=90°,

∴∠DNE=90°,ND=NE,

∴∠NDE=∠NED=45°,

∴∠ =180°-90°-45°=45°,

∴α=45°.

故答案是:45

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网