题目内容
【题目】如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中P点从点A开始沿AB方向运动且速度为每秒lcm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.
(1)出发2秒后,求线段PQ的长?
(2)当点Q在边BC上运动时,出发儿秒钟后,OPQB是等腰三角形?
(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间?
【答案】(1)出发2秒后,线段PQ的长为;(2)当点Q在边BC上运动时,出发秒后,△PQB是等腰三角形; (3)当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.
【解析】
(1)根据点P、Q的运动速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;
(2)设出发t秒钟后,△PQB能形成等腰三角形,则BP=BQ,由BQ=2t,BP=8-t,列式求得t即可;
(3)当点Q在边CA上运动时,能使△BCQ成为等腰三角形的运动时间有三种情况:①当CQ=BQ时(图1),则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得t;
②当CQ=BC时(如图2),则BC+CQ=12,易求得t;
③当BC=BQ时(如图3),过B点作BE⊥AC于点E,则求出BE,CE,即可得出t.
(1)BQ=2×2=4cm,BP=ABAP=82×1=6cm,
∵∠B=90°,
由勾股定理得:PQ=,
∴出发2秒后,线段PQ的长为;
(2)BQ=2t,BP=8-t ,
由题意得:2t=8-t ,
解得:t=,
∴当点Q在边BC上运动时,出发秒后,△PQB是等腰三角形;
(3) ∵∠ABC=90°,BC=6,AB=8,
∴AC==10.
①当CQ=BQ时(图1),则∠C=∠CBQ,
∵∠ABC=90°,
∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,
∴∠A=∠ABQ,
∴BQ=AQ,
∴CQ=AQ=5,
∴BC+CQ=11,
∴t=11÷2=5.5秒;
②当CQ=BC时(如图2),
则BC+CQ=12,
∴t=12÷2=6秒,
③当BC=BQ时(如图3),过B点作BE⊥AC于点E,
∴BE=,
所以CE===3.6,
故CQ=2CE=7.2,
所以BC+CQ=13.2,
∴t=13.2÷2=6.6秒.
由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.