题目内容
【题目】如图所示,一次函数的图象与反比例函数的图象交于.
(1)求反比例函数和一次函数的解析式;
(2)在x轴上存在一点C,使为等腰三角形,求此时点C的坐标;
(3)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.
【答案】(1),;(2),,,;(3)-12<x<0或x>3
【解析】
(1)因为反比例函数过A、B两点,所以可求其解析式和n的值,从而知B点坐标,进而求一次函数解析式;
(2)分三种情况:OA=OC,AO=AC,CA=CO,分别求解即可;
(3)根据图像得出一次函数图像在反比例函数图像上方时x的取值范围即可.
解:(1)把A(3,4)代入,
∴m=12,
∴反比例函数是;
把B(n,-1)代入得n=12.
把A(3,4)、B(-12,1)分别代入y=kx+b中:
得,
解得,
∴一次函数的解析式为;
(2)∵A(3,4),△AOC为等腰三角形,OA=,
分三种情况:
①当OA=OC时,OC=5,
此时点C的坐标为,;
②当AO=AC时,∵A(3,4),点C和点O关于过A点且垂直于x轴的直线对称,
此时点C的坐标为;
③当CA=CO时,点C在线段OA的垂直平分线上,
过A作AD⊥x轴,垂足为D,
由题意可得:OD=3,AD=4,AO=5,设OC=x,则AC=x,
在△ACD中,
,
解得:x=,
此时点C的坐标为;
综上:点C的坐标为:,,,;
(3)由图得:
当一次函数图像在反比例函数图像上方时,
-12<x<0或x>3,
即使一次函数的值大于反比例函数的值的x的取值范围是:-12<x<0或x>3.
【题目】小云在学习过程中遇到一个函数.下面是小云对其探究的过程,请补充完整:
(1)当时,对于函数,即,当时,随的增大而 ,且;对于函数,当时,随的增大而 ,且;结合上述分析,进一步探究发现,对于函数,当时,随的增大而 .
(2)当时,对于函数,当时,与的几组对应值如下表:
0 | 1 | 2 | 3 | |||||
0 | 1 |
综合上表,进一步探究发现,当时,随的增大而增大.在平面直角坐标系中,画出当时的函数的图象.
(3)过点(0,m)()作平行于轴的直线,结合(1)(2)的分析,解决问题:若直线与函数的图象有两个交点,则的最大值是 .
【题目】某生产商存有1200千克产品,生产成本为150元/千克,售价为400元千克.因市场变化,准备低价一次性处理掉部分存货,所得货款全部用来生产产品,产品售价为200元/千克.经市场调研发现,产品存货的处理价格(元/千克)与处理数量(千克)满足一次函数关系(),且得到表中数据.
(千克) | (元/千克) |
200 | 350 |
400 | 300 |
(1)请求出处理价格(元千克)与处理数量(千克)之间的函数关系;
(2)若产品生产成本为100元千克,产品处理数量为多少千克时,生产产品数量最多,最多是多少?
(3)由于改进技术,产品的生产成本降低到了元/千克,设全部产品全部售出,所得总利润为(元),若时,满足随的增大而减小,求的取值范围