题目内容

【题目】在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.

(1)如图1,当E是线段AC的中点时,求证:BE=EF.

(2)如图2,当点E不是线段AC的中点,其它条件不变时,请你判断(1)中的结论是否成立?若成立,请证明;若不成立,说明理由.

【答案】(1)详见解析;(2)结论成立理由详见解析.

【解析】

(1)由四边形ABCD是菱形,∠ABC=60°,可知△ABC是等边三角形,因为E是线段AC的中点,所以∠CBE=ABE=30°,AE=CE,AE=CFCE=CF可知∠CEF=∠F由∠ACF=120°可知∠F=30°∴∠F=∠CBE=30°。即可证明BE=EF.(2)过点EEGBCAB于点G,可得∠AGE=ABC=60°,因为∠BAC=60°,所以△AGE是等边三角形,可知AG=AE=GE,∠AGE=60°,可知BG=CE,因为CF=AE,所以GE=CF,进而可证明△BGE≌△ECF,即可证明BE=EF.

1)∵四边形ABCD是菱形,

AB=BC,

∵∠ABC=60°,

∴△ABC是等边三角形,

∴∠BCA=60°,

E是线段AC的中点,

∴∠CBE=ABE=30°,AE=CE,

CF=AE,

CE=CF,

∵∠ECF=120°,

∴∠F=∠CEF=30°

∴∠CBE=F=30°,

BE=EF;

(2)结论成立;理由如下:

过点EEGBCAB于点G,如图2所示:

∵四边形ABCD为菱形,

AB=BC,BCD=120°,ABCD,

∴∠ACD=60°,DCF=ABC=60°,

∴∠ECF=120°,

又∵∠ABC=60°,

∴△ABC是等边三角形,

AB=AC,ACB=60°,

又∵EGBC,

∴∠AGE=ABC=60°,

又∵∠BAC=60°,

∴△AGE是等边三角形,

AG=AE=GE,AGE=60°,

BG=CE,,

又∵CF=AE,

GE=CF,

∵在△BGE和△CEF中,BG=CE,∠BGE=∠ECF,GE=CF,

∴△BGE≌△ECF(SAS),

BE=EF.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网