题目内容

【题目】如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.

(1)求这条抛物线的表达式;
(2)连结AB、BC、CD、DA,求四边形ABCD的面积;
(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.

【答案】
(1)

解:∵抛物线y=ax2+bx﹣5与y轴交于点C,

∴C(0,﹣5),

∴OC=5.

∵OC=5OB,

∴OB=1,

又点B在x轴的负半轴上,

∴B(﹣1,0).

∵抛物线经过点A(4,﹣5)和点B(﹣1,0),

,解得

∴这条抛物线的表达式为y=x2﹣4x﹣5.


(2)

解:由y=x2﹣4x﹣5,得顶点D的坐标为(2,﹣9).

连接AC,

∵点A的坐标是(4,﹣5),点C的坐标是(0,﹣5),

又SABC= ×4×5=10,SACD= ×4×4=8,

∴S四边形ABCD=SABC+SACD=18.


(3)

解:过点C作CH⊥AB,垂足为点H.

∵SABC= ×AB×CH=10,AB=5

∴CH=2

在RT△BCH中,∠BHC=90°,BC= ,BH= =3

∴tan∠CBH= =

∵在RT△BOE中,∠BOE=90°,tan∠BEO=

∵∠BEO=∠ABC,

,得EO=

∴点E的坐标为(0,


【解析】(1)先得出C点坐标,再由OC=5BO,得出B点坐标,将A、B两点坐标代入解析式求出a,b;(2)分别算出△ABC和△ACD的面积,相加即得四边形ABCD的面积;(3)由∠BEO=∠ABC可知,tan∠BEO=tan∠ABC,过C作AB边上的高CH,利用等面积法求出CH,从而算出tan∠ABC,而BO是已知的,从而利用tan∠BEO=tan∠ABC可求出EO长度,也就求出了E点坐标.
【考点精析】本题主要考查了二次函数的概念和二次函数的图象的相关知识点,需要掌握一般地,自变量x和因变量y之间存在如下关系:一般式:y=ax2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数;二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网