题目内容

如图,AB是⊙O的直径,C是
BD
的中点,CE⊥AB于E,BD交CE于点F.
(1)求证:CF﹦BF;
(2)若CD﹦6,AC﹦8,则⊙O的半径为______,CE的长是______.
(1)证明:
∵AB是⊙O的直径,
∴∠ACB﹦90°
又∵CE⊥AB,
∴∠CEB﹦90°
∴∠2﹦90°-∠ACE﹦∠A,
∵C是
BD
的中点,
BC
=
DC

∴∠1﹦∠A(等弧所对的圆周角相等),
∴∠1﹦∠2,
∴CF﹦BF;


(2)∵C是
BD
的中点,CD﹦6,
∴BC=6,
∵∠ACB﹦90°,
∴AB2=AC2+BC2
又∵BC=CD,
∴AB2=64+36=100,
∴AB=10,
∴CE=
AC•BC
AB
=
8×6
10
=
24
5

故⊙O的半径为5,CE的长是
24
5

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网