题目内容
【题目】如图,在△ABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分线,DE分别交BC、AB于点D、E.
(1)求证:△ABC为直角三角形.
(2)求AE的长.
【答案】(1)见解析;(2) AE的长是.
【解析】
(1)利用勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形可得△ABC是直角三角形;
(2)根据线段垂直平分线的性质可得BE=CE,设AE=x,则EC=4-x,根据勾股定理可得x2+32=(4-x)2,再解即可.
(1)证明:∵△ABC中,AB=4,AC=3,BC=5,
又∵42+32=52,
即AB2+AC2=BC2,
∴△ABC是直角三角形;
(2)证明:连接CE.
∵DE是BC的垂直平分线,
∴EC=EB,
设AE=x,则EC=4-x.
∴x2+32=(4-x)2.
解之得x=,即AE的长是.
练习册系列答案
相关题目