题目内容
【题目】如图,平面内一定点A在直线MN的上方,点O为直线MN上一动点 ,作射线OA、OP、OA’,当点O在直线MN上运动时,始终保持∠MOP=90°、∠AOP=∠A’OP,将射线OA绕点O顺时针旋转60°得到射线OB
(1)如图,当点O运动到使点A在射线OP的左侧,若OB平分∠A’OP,求∠AOP的度数;
(2)当点O运动到使点A在射线OP的左侧,∠AOM=3∠A’OB时,求的值;
(3)当点O运动到某一时刻时,∠A’OB=150°,直接写出∠BOP= 度.
【答案】(1) ∠AOP=40°;(2) 或6; (3) 105或135.
【解析】试题分析:
(1)由题意易得:∠AOB=60°,∠AOP=∠A′OP=2∠POB,由此可得∠AOP+∠POB=3∠POB=60°,这样解得∠POB=20°,即可得到∠AOP=40°;
(2)①当射线OB在∠A′OP的内部时,如图1,设∠A′OB= ,则∠AOM=,∠AON=,∠AOA′= ,由此可得∠AOP=∠A′OP=,由∠AOM+∠AOP=∠MOP=90°可得,解得,由此即可求得∠AON和∠AOP,从而可求得它们的比值;
②当射线OB在∠AON的内部时,如图2,设∠A′OB= ,则∠AOM=,∠AON=,∠AOA′= ,由此可得∠AOP=∠A′OP=,由∠AOM+∠AOP=∠MOP=90°可得,解得,由此即可求得∠AON和∠AOP,从而可求得它们的比值;
(3)如图3,当∠A′OB=150°时,易得∠A′OA=150°-60°=90°,结合∠AOP=∠A′OP可得∠AOP=45°,从而可得∠BOP=60°+45°=105°;如图4,当∠A′OB=150°时,易得∠A′OA=360°-150°-60°=150°,结合∠AOP=∠A′OP可得∠AOP=75°,从而可得∠BOP=60°+75°=135°;
试题解析:
(1)由题意可得:∠AOB=60°,∠AOP=∠A′OP,
∵OB平分∠A′OP,
∴∠A′OP=2∠POB,
∴∠AOP=∠A′OP=2∠POB,
∴∠AOB=∠AOP+∠POB=3∠POB=60°,
∴∠POB=20°,
∴∠AOP=2∠POB=40°;
(2)①当点O运动到使点A在射线OP的左侧,且射线OB在在∠A′OP的内部时,如图1,
设∠A′OB=x,则∠AOM=3∠A′OB=3x,∠AOA′= ,
∵OP⊥MN,
∴∠AON=180°-3,∠AOP=90°-3x,
∴,
∵∠AOP=∠A′OP,
∴∠AOP=∠A′OP=
∴,解得: ,
∴;
②当点O运动到使A在射线OP的左侧,但是射线OB在∠A′ON内部时,如图2,
设∠A′OB=x,则∠AOM=3x,∠AON=,∠AOA′= ,
∵∠AOP=∠A′OP,
∴∠AOP=∠A′OP=,
∵OP⊥MN,
∴∠AOP=90-∠AOM=90-3x,
∴,解得: ,
∴ ;
(3)①如图3,当∠A′OB=150°时,
由图可得:∠A′OA=∠A′OB-∠AOB=150°-60°=90°,
又∵∠AOP=∠A′OP,
∴∠AOP=45°,
∴∠BOP=60°+45°=105°;
②如图4,当∠A′OB=150°时,由图可得∠A′OA=360°-150°-60°=150°,
又∵∠AOP=∠A′OP,
∴∠AOP=75°,
∴∠BOP=60°+75°=135°;
综上所述:∠BOP的度数为105°或135°.
【题目】盛盛同学到某高校游玩时,看到运动场的宣传栏中的部分信息(如下表):
院系篮球赛成绩公告 | |||
比赛场次 | 胜场 | 负场 | 积分 |
22 | 12 | 10 | 34 |
22 | 14 | 8 | 36 |
22 | 0 | 22 | 22 |
盛盛同学结合学习的知识设计了如下问题,请你帮忙完成下列问题:
(1)从表中可以看出,负一场积______分,胜一场积_______分;
(2)某队在比完22场的前提下,胜场总积分能等于其负场总积分的2倍吗?请说明理由.