题目内容
【题目】某小区2号楼对外销售,已知2号楼某单元共33层,一楼为商铺,只租不售,二楼以上价格如下:第16层售价为6000元/米2,从第16层起每上升一层,每平方米的售价提高30元,反之每下降一层,每平方米的售价降低10元,已知该单元每套的面积均为100米2
(1)请在下表中,补充完整售价y(元/米2)与楼层x(x取正整数)之间的函数关系式.
楼层x(层) | 1楼 | 2≤x≤15 | 16楼 | 17≤x≤33 |
售价y(元/米2) | 不售 |
| 6000 |
|
(2)某客户想购买该单元第26层的一套楼房,若他一次性付清购房款,可以参加如图优惠活动.请你帮助他分析哪种优惠方案更合算.
【答案】(1)10x+5840,30x+5520;(2)见解析.
【解析】
(1)根据题意可以分别写出2≤x≤15和17≤x≤33对应的函数解析式,本题得以解决;
(2)根据(1)中的函数关系式可以求得第26层的价格,即可写出两种优惠活动的花费,然后利用分类讨论的方法即可解答本题.
解:(1)由题意可得,
当2≤x≤15时,y=6000﹣(16﹣x)×10=10x+5840,
当17≤x≤33时,y=6000+(x﹣16)×30=30x+5520,
故答案为:10x+5840,30x+5520;
(2)第26层每平方米的价格为:30×26+5520=6300元,
方案一应付款:W1=100×6300×(1﹣5%)﹣m=598500﹣m,
方案二应付款:W2=100×6300×(1﹣7%)=585900,
当W1>W2时,598500﹣m>585900,得m<12600,
当W1=W2时,598500﹣m=585900,得m=12600,
当W1<W2时,598500﹣m>585900,得m>12600,
所以当m<12600时,方案二合算;
当 m=12600时,二个方案相同;
当m>12600时,方案一合算.