题目内容

【题目】如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足SPAB=S矩形ABCD,则点PA、B两点的距离之和PA+PB的最小值为______

【答案】4

【解析】首先由SPAB=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.

ABPAB边上的高是h.

SPAB=S矩形ABCD

ABh=ABAD,

h=AD=2,

∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.

RtABE中,∵AB=4,AE=2+2=4,

BE=

PA+PB的最小值为4

故答案为:4

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网