题目内容
【题目】某体育用品商场采购员要到厂家批发购进篮球和排球共100只,付款总额不得超过11 815元.已知两种球厂家的批发价和商场的零售价如右表,试解答下列问题:
品名 | 厂家批发价(元/只) | 市场零售价(元/只) |
篮球 | 130 | 160 |
排球 | 100 | 120 |
(1)该采购员最多可购进篮球多少只?
(2)若该商场把这100只球全部以零售价售出,为使商场获得的利润不低于2580元,则采购员至少要购篮球多少只,该商场最多可盈利多少元?
【答案】
(1)解:设采购员可购进篮球x只,则排球是(100﹣x)只,
依题意得130x+100(100﹣x)≤11815
解得x≤60.5
∵x是整数
∴x=60
答:购进篮球和排球共100只时,该采购员最多可购进篮球60只
(2)解:设篮球x只,则排球是(100﹣x)只,
则 ,由①得,x≤60.5,由②得,x≥58,
∵篮球的利润大于排球的利润,因此这100只球中,当篮球最多时,商场可盈利最多,
故篮球60只,此时排球40只,商场可盈利(160﹣130)×60+(120﹣100)×40=1800+800=2600(元).
即该商场可盈利2600元
【解析】(1)首先设采购员最多购进篮球x,排球(100﹣x)只,列出不等式方程组求解;(2)如图看图可知篮球利润大于排球,则可推出篮球最多时商场盈利最多.
练习册系列答案
相关题目