题目内容

已知:如图,AB为半圆的直径,O为圆心,C为半圆上一点, OE⊥弦AC于点D,交⊙O于点E. 若AC=8cm,DE="2cm." 求OD的长.
解:∵OE⊥弦AC,
∴AD=AC=4. 
∴OA2=OD2+AD2
∴OA2=(OA-2)2+16
解得,OA="5"
∴OD=3 
先根据垂径定理求出AD的长,再设OA=r,则OD=OA-DE=r-2,在Rt△AOD中利用勾股定理即可求出OA的长,进而可得出OD的长.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网