题目内容
如图,OB、OC分别平分∠ABC和∠ACB,若∠A=60°,则∠O等于( )
A.100° | B.120° | C.140° | D.150° |
∵OB、OC分别是∠ABC和∠ACB的角平分线,
∴∠OBC+∠OCB=
∠ABC+
∠ACB=
(∠ABC+∠ACB),
∵∠A=60°,
∴∠OBC+∠OCB=
(180°-60°)=60°,
∴∠BOC=180°-(∠OBC+∠OCB)
=180°-60°
=120°.
故选B.
∴∠OBC+∠OCB=
1 |
2 |
1 |
2 |
1 |
2 |
∵∠A=60°,
∴∠OBC+∠OCB=
1 |
2 |
∴∠BOC=180°-(∠OBC+∠OCB)
=180°-60°
=120°.
故选B.
练习册系列答案
相关题目