题目内容

【题目】问题提出:

如图所示,有三根针和套在一根针上的若干金属片,按下列规则,把金属片从一根针上全部移到另一根针上.

a.每次只能移动1个金属片;

b.较大的金属片不能放在较小的金属片上面.

个金属片从1号针移到3号针,最少移动多少次?

问题探究:为了探究规律,我们采用一般问题特殊化的方法,先从简单的情形入手,再逐次递进,最后得出一般性结论.

探究一:当时,只需把金属片从1号针移到3号针,用符号表示,共移动了1次.

探究二:当时,为了避免将较大的金属片放在较小的金属片上面,我们利用2号针作为中间针,移动的顺序是:

a.把第1个金属片从1号针移到2号针;

b.把第2个金属片从1号针移到3号针;

c.把第1个金属片从2号针移到3号针.

用符号表示为:.共移动了3次.

探究三:当时,把上面两个金属片作为一个整体,则归结为的情形,移动的顺序是:

a.把上面两个金属片从1号针移到2号针;

b.把第3个金属片从1号针移到3号针;

c.把上面两个金属片从2号针移到3号针.

其中(1)和(3)都需要借助中间针,用符号表示为:

.共移动了7次.

1)探究四:请仿照前面步骤进行解答:当时,把上面3个金属片作为一个整体,移动的顺序是:___________________________________________________.

2)探究五:根据上面的规律你可以发现当时,需要移动________次.

3)探究六:把个金属片从1号针移到3号针,最少移动________次.

4)探究七:如果我们把个金属片从1号针移到3号针,最少移动的次数记为,当时如果我们把个金属片从1号针移到3号针,最少移动的次数记为,那么的关系是__________

【答案】1)当时,移动顺序为:(1,2),(1,3),(2,3),(1,2),(3,1),(3,2),(1,2),(1,3),(2,3),(2,1),(3,1),(2,3),(1,2),(1,3),(2,3).

2,(3,(4

【解析】

根据移动方法与规律发现,随着盘子数目的增多,都是分两个阶段移动,用盘子数目减1的移动次数都移动到2柱,然后把最大的盘子移动到3柱,再用同样的次数从2柱移动到3柱,从而完成,然后根据移动次数的数据找出总的规律求解即可.

解:(1)当时,把上面3个金属片作为一个整体,移动的顺序是:

1,2),(1,3),(2,3),(1,2),(3,1),(3,2),(1,2),(1,3),(2,3),(2,1),(3,1),(2,3),(1,2),(1,3),(2,3).

故答案为:(1,2),(1,3),(2,3),(1,2),(3,1),(3,2),(1,2),(1,3),(2,3),(2,1),(3,1),(2,3),(1,2),(1,3),(2,3).

2)解:设 是把n个盘子从1柱移到3柱过程中移动盘子之最少次数

n=1时,f1=1

n=2时,小盘→2柱,大盘→3柱,小柱从2→3柱,完成,即

n=3时,小盘→3柱,中盘→2柱,小盘从3→2柱,大盘从1→3柱,小盘从2→1柱,中盘从2→3柱,小盘从1→3柱,完成.

[种方法把中、小两盘移到2柱,大盘3柱;再用 种方法把中、小两盘从23柱,完成]

故答案为:

3)由(2)知:

故答案为:

4

故答案为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网