题目内容
【题目】如图,四边形ABCD中,F是CD上一点,E是BF上一点,连接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,则下列结论中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正确的个数有( )
A.1个B.2个C.3个D.4个
【答案】C
【解析】
依据SAS可证明ABE≌,由全等三角形的性质可得到,则,然后依据四边形的内角和为可求得的度数,然后再证明,最后,依据等腰三角形的性质可得到AC与DE的关系.
解:∵AB=AC,∠BAC=∠DAE,AE=AD,
∴ABE≌△ACD,故①正确.
∵ABE≌△ACD,
∴∠AEB=∠ADC.
∵∠AEB+∠AEF=180°,
∴∠AEF+∠ADC=180°,
∴∠BFD=180°-∠EAD=180°-70°=110°,故③正确.
∵AE平分∠BAC,
∴∠EAC=35°.
又∵∠DAE=70°,
∴AC平分∠EAD.
又∵AE=AD,
∴AC⊥EF,AC平分EF.
∴AC是EF的垂直平分线,故④正确.
由已知条件无法证明BE=EF,故②错误.
故选:C.
练习册系列答案
相关题目
【题目】为了更好改善河流的水质,治污公司决定购买10台污水处理设备现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.
A型 | B型 | |
价格万元台 | a | b |
处理污水量吨月 | 240 | 200 |
求a,b的值;
治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;
在的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.